Trata-se de uma sequência numérica em que cada número, a partir do terceiro é igual à soma dos dois anteriores. Ela começa com 0 e 1. Então, seria formada pelos seguintes termos: (0, 1, 1, 2, 3, 5, 8, 13, ...). Essa sequência aparece na natureza. Foi construída a partir da observação do fluxo reprodutivo dos coelhos e considerando que:
• no primeiro mês nasce apenas um casal,
• casais amadurecem sexualmente (e reproduzem-se) apenas após o segundo mês de vida,
• não há problemas genéticos no cruzamento consanguíneo,
• todos os meses, cada casal fértil dá a luz a um novo casal, e
• os coelhos nunca morrem.
Valendo essas condições seria possível saber quantos coelhos se teria depois de um determinado número de meses. Infelizmente, os coelhos morrem. Mas, posteriormente se verificou que esses números aparecem em outras situações naturais, tais como a nervura das folhas, os galhos das árvores, o cone do abacaxi e da alcachofra, ou no desenrolar da samambaia.
Genericamente, chama-se sequência de Fibonacci qualquer função do tipo: g(n+2) = g(n) + g(n+1).
É usada na análise de mercados financeiros, na ciência da computação e na teoria dos jogos.
A partir do número 8 dessa sequência, a razão entre dois termos consecutivos é conhecida como “regra de ouro”, sendo 1 : 1,6. É considerada como o número da perfeição, influenciando a arte e a arquitetura.
• no primeiro mês nasce apenas um casal,
• casais amadurecem sexualmente (e reproduzem-se) apenas após o segundo mês de vida,
• não há problemas genéticos no cruzamento consanguíneo,
• todos os meses, cada casal fértil dá a luz a um novo casal, e
• os coelhos nunca morrem.
Valendo essas condições seria possível saber quantos coelhos se teria depois de um determinado número de meses. Infelizmente, os coelhos morrem. Mas, posteriormente se verificou que esses números aparecem em outras situações naturais, tais como a nervura das folhas, os galhos das árvores, o cone do abacaxi e da alcachofra, ou no desenrolar da samambaia.
Genericamente, chama-se sequência de Fibonacci qualquer função do tipo: g(n+2) = g(n) + g(n+1).
É usada na análise de mercados financeiros, na ciência da computação e na teoria dos jogos.
A partir do número 8 dessa sequência, a razão entre dois termos consecutivos é conhecida como “regra de ouro”, sendo 1 : 1,6. É considerada como o número da perfeição, influenciando a arte e a arquitetura.
A construção do Parthenon de Atenas utiliza esse retângulo áureo.
Mais informações: http://pt.wikipedia.org/wiki/N%C3%BAmero_de_Fibonacci
Mais informações: http://pt.wikipedia.org/wiki/N%C3%BAmero_de_Fibonacci
Nenhum comentário:
Postar um comentário